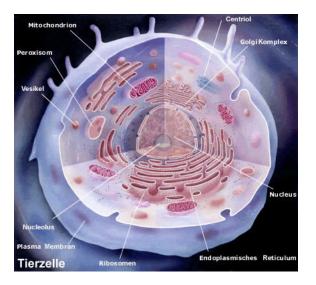
Zellaufbau Java 3D Verteilungsalgorithmus

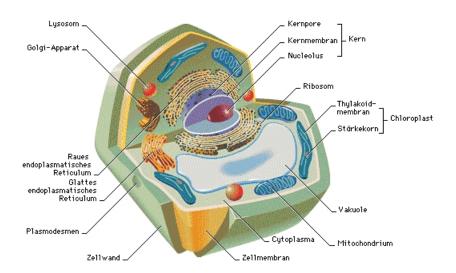
Christina Ander & Regina Bisdorf


Universität Bielefeld

06.12.2007

- Zellaufbau Tierzelle Pflanzenzelle Bakterienzelle
- 2 Java 3D Überblick Szenengraph Java 3D Rezept
- 3 Verteilungsalgorithmus Problemstellung Konkave Hiille
- 4 Quellen

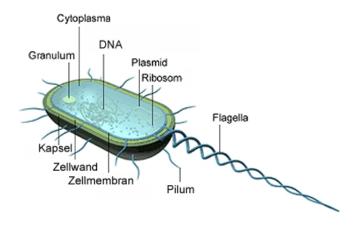
Zellaufbau


Tierzelle

Tierzelle - Organellen

Name	Größe	Anzahl	Funktion
	$[\mu m]$	pro Zelle	
Nucleus (Zellkern)	5-16	1	Enthält die Chromosomen und damit
			den Hauptteil des Erbguts, Steuerzentrum des
			Zellstoffwechsels
Nucleolus		1-3	"Ribosomenfabrik", da an bestimmten
			Bereichen einiger Chromosomen
			angelagert, die für rRNAs kodieren
Zellmembran	Stärke von	1	Erhaltung des inneren Milieus,
	6-10 nm		Abgrenzung, Stoffaustausch
Endoplasmatisches		1	Proteinbiosynthese (rau), Stoff- und
Retikulum rau			Flüssigkeitstransport, Verbindungswege
(mit Ribosomen)/glatt			zwischen Zellorganellen (glatt)
Golgi-Apparat	2-3	1	Exozytosemechanismus (Ausschleusen von
			Fremdkörpern), Sekretion, Hormonbildung,
			Bildung der Lysosomen
Mitochondrium	0,5-1	1000-2000	ATP-Synthese (oxidative Phosphorylierung),
			Energiegewinnung, Ort der Zellatmung,
			Synthese wichtiger Moleküle, Fettsäureabbau
Lysosom	0,1-1	300	Degradierung von Fremdkörpern,
			Autolyse nach Zelltod, intrazelluläres Recycling
Peroxisom	0,5	400	Oxidierende Reaktionen
			(zum Beispiel zum Abbau toxischer Moleküle)
Vesikel		200	Endocytose, Exocytose, intrazellulärer Transport

Pflanzenzelle


Pflanzenzelle - Organellen

Zusätzliche Organellen pflanzlicher Zellen

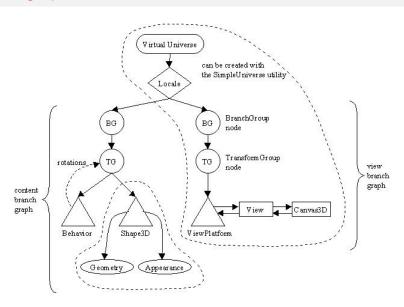
Name	Anzahl pro Zelle	Funktion
Chloroplast	20-40	Fotosynthese
Chromoplast		enthält Farbstoffe, zum Beispiel für Blütenfärbung
Leukoplast		Synthese von Monoterpenen, Aufbau und Speicherung von Stärke
Plasmodesmos		Verbindung von einer Pflanzenzelle zur Nachbarzelle
		→ Stoffaustausch
Zellsaftvakuole		Speicherung v. Nährstoffen, ist für den
		Wasserhaushalt der Zelle zuständig, Proteindegradierung u. a.
Zellwand	1	Stabilisierung, Schutz

→ keine Lysosomen

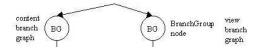
Bakterienzelle

Bakterienzelle - Organelle

Zusätzliche Organellen bakterieller Zellen


Name	Funktion
Flagelle	Bewegung
Pilus	typisch für gramnegative Bakterien, Anheftung
Granula	körnchenförmige Einlagerungen mit
	Speicher- oder Sekretstoffen
Kapsel	Schutz vor Austrocknung, Phagozytose und
	Ablösung von der Oberfläche

Java 3D


Uberblick

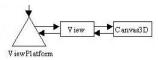
- Bibliothek von Java-Klassen
- dient zur Erzeugung, Manipulation und Darstellung dreidimensionaler Grafiken
- wird seit 1997 entwickelt
- seit 2004 als Open Source freigegeben
- Programmkonzept basiert auf einem Szenegraphen

Szenengraph

BranchGroup

- Inhalt des Content-Branch für den Inhalt des Universums
- Inhalt des View-Branch für den View auf das Universum
- Branchgroups können compiliert werden
 - gesamter Ast wird optimiert

TransformGroup



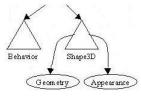
TransformGroup steht in Verbindung zu:

- einem Transform3D Objekt
 - die Transformation definiert wird
 - wirkt sich auf alle Kinder des Astes aus
 - dient zur Translation, Rotation und Skalierung geometrischer Objekte
- oder einem Interpolator
 - Blattknoten Behavior
 - Basis für Interaktion und Animation

View Branch

ViewPlatform

Legt das Koordinatensystem der Ansicht fest


View

- enthält Informationen zum rendern der Szene einem Gesichtspunkt
- besitzt Referenzen zu:
 - PhysicalBody zum Erstellen von Stereoscopischem Anzeigen von Szenen
 - PhysicalEnvironment zum Tracking des Users

Canvas3D

- Erweiterung der Klasse AWT
- bietet eine Leinwandfür das 3D rendern

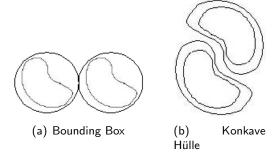
Content Branch

3D-Shapes

- geometrische Objekte im Szenengraph
- definiert sich über:
 - Appearance
 - Geometry

Behavior → Basis für Interaktion und Animation

- Interaktion
 - Reaktion des Szenengraphen auf eine Aktion des Benutzers
- Animation
 - Veränderung des Szenengraphen nach einem bestimmten Zeitintervall


Rezept für ein Java 3d Univers

- 1 Erzeuge ein Canvas3D Objekt
- Erzeuge ein VirtualUniverse Objekt
- 8 Erzeuge ein Locale Objekt und verbinde es mit dem VirtualUniverse Objekt
- 4 Konstruiere den View Ast
 - 1 Erzeuge ein View Objekt
 - 2 Erzeuge ein ViewPlatform Objekt
 - 3 Erzeuge ein Physical Body Objekt
 - Erzeuge ein PhysicalEnvironment Objekt
 - 5 Verbinde die Objekte ViewPlatform, PhysicalBody, PhysicalEnvironment und Canvas3D mit dem View Objekt
- 5 Konstruiere den/die Content Ast/Äste
- 6 Kompiliere die Aste
- Hänge die Aste an das Locale Objekt

Verteilungsalgorithmus

Verteilungsalgorithmus

Problemstellung

Konkave Hülle

- bisher keine Implementierung in Java
- verschiedene Grundideen
 - Algorithmus f
 ür konvexe H
 ülle zu Algorithmus f
 ür konkaver H
 ülle verändern
 - um einen Punkt eine Kugel mit festem Radius legen
 - → Punkte auf Mantel der Kugel finden
 - → aus diesen die Punkte auswählen, die auch auf der Oberfläche des Objektes liegen
 - → zur Hülle hinzufügen
 - Ideen, die uns noch nicht gekommen sind :) (Vorschläge willkommen!)

Quellen

- Java 3D Api: http://java.sun.com/products/javamedia/3D/forDevelopers/J3D_1_3_API/j3dapi/index.html
- Essential Java 3D fast von Ian Palmer
- Wikipedia

Vielen Dank für die Aufmerksamkeit! Fragen?