
Technische Fakult”at

Stereoscopy in OpenGL by the example
of Moleculevisualization

Thomas Waltemate

Datum: March 5, 2012

Abstract

In this short elaboration is explained how to generate (realtime) stereoscopic images with
OpenGl. First there will be a short introduction to stereoscopic rendering. Then there
is an explanation of the formulas given, that are needed to calculate the frustums for the
stereoimages. And �nally there is shown the example of Moleculevisualization.

i

Contents

1 Introduction 1
1.1 Toe-In . 1
1.2 O�-axis . 2

2 Mathematic background 3
2.1 Translation . 3
2.2 Frustum . 3
2.3 Rendering . 4
2.4 Molecule Visualization . 6

3 Conclusion 9

Sources 11

iii

1 Introduction

To generate a stereoscopic image on the screen, there are needed two images: One for left
eye and one for the right eye. There are two general approaches to make these images.
The �rst one is called "toe-in\ and the second one is called "o�-axis\.

1.1 Toe-In

In the Toe-In approach there are two symmetric frustums and therefore two crossed
projection planes as you can see in �gure 1.1. While this approach does produce a working
stereo image, it also has the issue that it makes the viewer feel sick or at least gives them
some sort of headache.
This is it’s main disadvantage, but it is easier to implement as well.

Figure 1.1: Toe-In approach.

1

1 Introduction

1.2 Off-axis

The O�-axis approach uses two asymmetric frustums. This leads to two parallel projection
planes as one can see in �gure 1.2. Of course it produces a working stereoscopic image,
too. While it has the disadvantage that it is more di�cult to implement | because it
needs a more complicated frustum | it does not cause any problems like sickness or
headaches as the Toe-In approach does.
This should be the approach to choose when you want to produce stereo images.

Figure 1.2: O�-axis approach.

2

2 Mathematic background

Because the O�-axis approach is the better one, only this approach is explained.
To get the two pictures for the left and right eye, there three steps needed. The �rst is
transforming the camera or the scene/object, the second is calculating the frustums and
the third is the rendering of the scene.

2.1 Translation

The translation of the scene/object is easily done by the old OpenGL method glTranslate(+/-
(0.5*eye separation), 0.0, 0.0) or an equivalent function for generating a translation
matrix. The translation of the camera can be achieved with the GLEW function glu-
Lookat(...) or again with a equivalent function that generates a look-at and therefore
view matrix.

2.2 Frustum

Figure 2.1: Frustum.

3

2 Mathematic background

For calculating the frustum the following values are needed: Left l, Right r, Bottom b,
Top t, Near near and Far far. The values are used like in �gure 2.1 and they are calculated
as follows:

wd2 = near · tan(
π

180
· FOV y

2
)

b = −wd2

t = wd2

Frustum for the left eye:

l = b · width
height

r = b · width
height

+ 0.5 · eye seperation · near

focaldistance

Frustum for the right eye:

l = b · width
height

+ 0.5 · eye seperation · near

focaldistance

r = b · width
height

The values width, height, FOVy, eye seperation, near and focaldistance are constants
given by the environment.
The OpenGL function glFrustum(GLdouble l, GLdouble r, GLdouble b, GLdouble t,
GLdouble near, GLdouble far) can be used with the just calculated values to get the
needed projection matrix and therefore the two frustums that are needed.

2.3 Rendering

To render the stereo images one has to follow these steps:

1. Calculate the Frustum for the left eye

2. Transform scene/camera to the right/left

3. Render the scene

4. Calculate the Frustum for the right eye

5. Transform scene/camera to the left/right

6. Render the scene

One can use di�erent types of stereorendering, like: anaglyph, quadbu�ering, Side-by-side
or Top-bottom.

4

2.3 Rendering

Anaglyph

Generating anaglyph images is easy. The only thing to do is set the right colormasks
before rendering the speci�c image. For the left eye the colormask has to be: glColor-
Mask(GL TRUE, GL FALSE, GL FALSE, GL FALSE) and for the right eye: glColor-
Mask(GL FALSE, GL TRUE, GL TRUE, GL FALSE).

Quadbuffering

To generate the images for quadbu�ering it is neccessary to render the two pictures into
the correct bu�ers.
First of all you have to activate quadbu�ering. In GLUT for example this is done with
the GLUT STEREO
ag in the glutInitDisplayMode(...) function (This does only work
if you have a Nvidia Quadro Card or an AMD equivalent). Then you just have to activate
the correct bu�er before rendering the two images: glDrawBu�er(GL BACK LEFT) for
the left eye and glDrawBu�er(GL BACK RIGHT) for the right eye. After that you have
to swap bu�ers as usual.

Side-by-side and Top-bottom

Figure 2.2: A side-by-side stereo image.

Side-by-side and Top-bottom methods are useful for 3D-TVs and 3D-Projectors.
The general approach for both methods is the same. The viewport has to be adjusted so
that it is divided in two halfs as you can see in �gure 2.2. This can be achieved by using
the glViewport() function.
For the Side-by-side method you have to adjust the viewport for the left eye like this:
glViewport(0, 0, 0.5*width,height) and the right one like this: glViewport(0.5*width, 0,
0.5*width, height).
The viewports for the Top-bottom method are pretty similar. Left eye: glViewport(0,
0.5*height, width,0.5*height); Right eye: glViewport(0, 0, width, 0.5*height).

5

2 Mathematic background

After each adjustment of the viewports you have to render the scene of course. It is pos-
sible that this is not correct for every TV/Projector, so you maybe have to invert pictures.

2.4 Molecule Visualization

Molecule Visualization is an important �eld for stereoscopic rendering, because it is pretty
important that you can di�rentiate single atoms and parts of a molecule. This perception
of depth could also be achieved by a shadow calculation, but this is sometimes pretty
expensive and has not quite the same results as stereo rendering.
You can see a direct comparison of a molecule with and without stereorendering in �g-
ure 2.3 and �gure 2.4. Of course you need Red-Cyan-3D-Glasses to view the stereo image
correctly.

6

2.4 Molecule Visualization

Figure 2.3: With stereo.

Figure 2.4: Without Stereo.

7

3 Conclusion

It is recommended that you use the O�-axis approach for rendering stereo images | at
least if you have the opportunity to calculate the frustum an easy way like in OpenGl.

Moleculevisualization is an important �eld for stereo rendering.

9

Sources

• http://paulbourke.net/miscellaneous/stereographics/stereorender/

• http://www.opengl.org/

• Bachelorarbeit: GPU-Based Molecule Rendering

11

	1 Introduction
	1.1 Toe-In
	1.2 Off-axis

	2 Mathematic background
	2.1 Translation
	2.2 Frustum
	2.3 Rendering
	2.4 Molecule Visualization

	3 Conclusion
	Sources

