Representation of surface properties of biomolecules using BioBlender

Multidimensional Cell Visualization

Mohammad Rafi Noori 12.06.14

Contents

- Overview
- Objective of BioBlender
- Packaging and installation
- General workflow
- User interface
- Out look

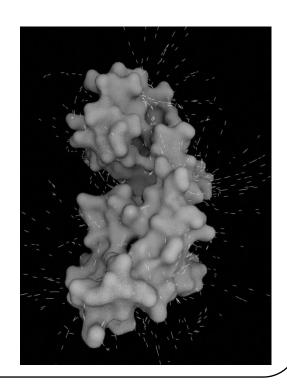
Overview

- In living cells, proteins are in continuous motion and interaction with the surrounding medium
- These interactions are mediate by electrostatic and lipophilic potentials.
- Calculated by physico-chemical programs and visualized as range of colors

Overview

- Color coding vary according to the tool
- With color code, encoding of characterestic and simultaneous visualization is almost impossible
- Require knowledge to decrypt color code

Objective of BioBlender


- Many tools for the visualization of 3D structures
 - VMD
 - SPDBViewer
 - Chimera
 - PyMOL and more
- Most of them can also calculate surface features such as **electrostatic potential EP**.
- These features are shown as field lines or as ranges of colors.

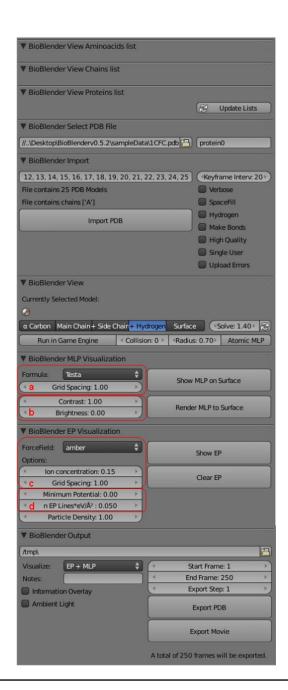
Objective of BioBlender

- With 3D animation and rendering open-source software a novel and intuitive code
- Bio Blender to show simultaneous visualization of chemical and physica properties.
- EP and MLP are calculated using some software and scripts, accessed through BioBlender interface.
- <u>Example</u>

Objective of BioBlender

- MLP is a range of optical features going from smooth-shiny for hydrophobic regions to rough-dull for hydrophilic.
- EP is shown as animated line particles that flow along field lines.
- Aim is to visualize molecules in a directly informative way

Programs and scripts

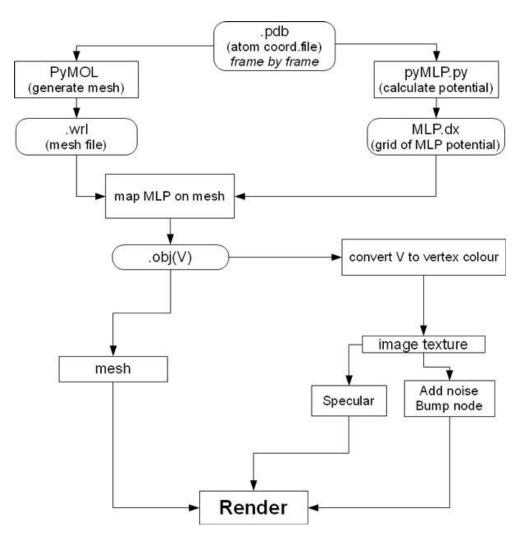

- Programs in the construction of BioBlender
 - **Blender:** is a free, open source, cross platform suite of tools for 3D creation
 - **PyMOL:** is a molecular graphics tool, used for visualization of .pdb files. It calculates the electrostatic potential through APBS plug-in.
 - **PDB2PQR:** providing a utility for
 - Converting protein files from PDB format to PQR format.
 - Assigns partial atomic charge to every atom according to different force fields.
 - **APBS:** is a software for evaluating the electrostatic properties of nanoscale biomolecular systems

Programs and scripts

- **civis.exe:** is a software to calculate the field lines and to export them in a ASCII, it imports the 3D surface (.obj) and the EP grid (.dx) calculated by APBS.
- **Python 2.6:** is an interpreted, interactive, OO, extensible programming language.
- **pyMLP.py:** is a Python script that contains a library of atomic lipophilic potential for all atoms present in proteins

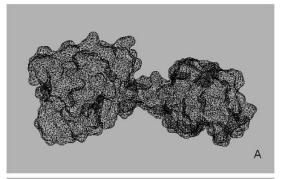
BioBlender Interface

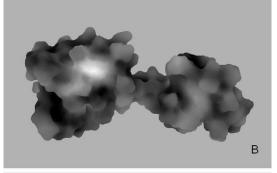
- BioBlender is used to
 - access several mentioned scientific programs.
 - biological visualization
 - handle proteins in the 3D space
 - displaying protien surface in a photorealistic way

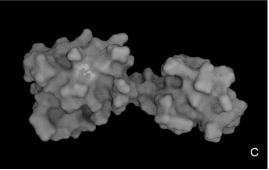


MLP calculus and representation

- PyMOL and pyMLP.py calculate the surface and the MLP values of PDF.
- MLP (in a .dx file) is mapped on the surface and both are saved as an .obj file.
- MLP values are converted into vertex colors, and texture images.
- These are finally mapped on the material of the mesh, and rendered as bump and mirror-like effects.

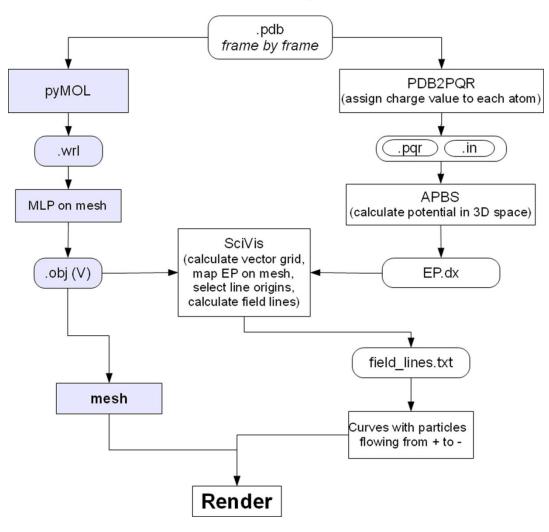

Diagram in next slide...


MLP calculus and representation



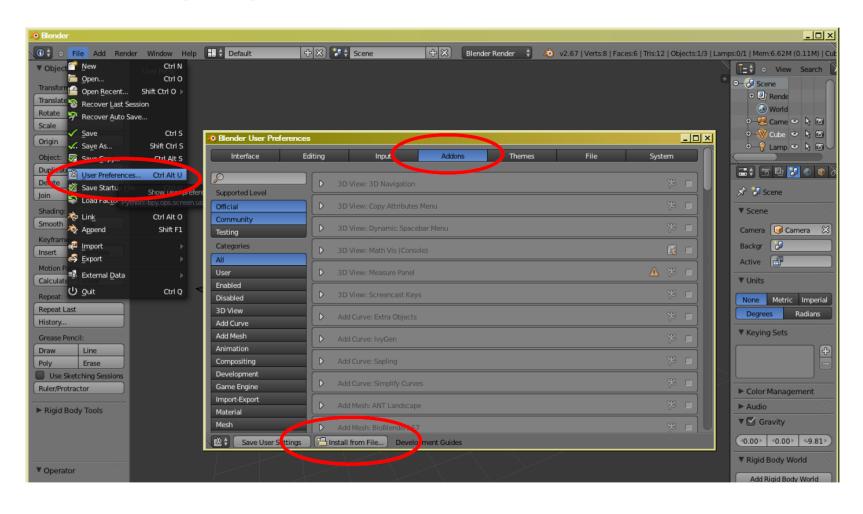
MLP mapping on surface of Calmodulin

- Steps in the creation of an image of Calmodulin:
 - A) Panel of the 3D scene of Blender with a wireframe view.
 - B) MLP representation as levels of grey.
 - C) Final image showing the variation of MLP distribution over the molecular surface.

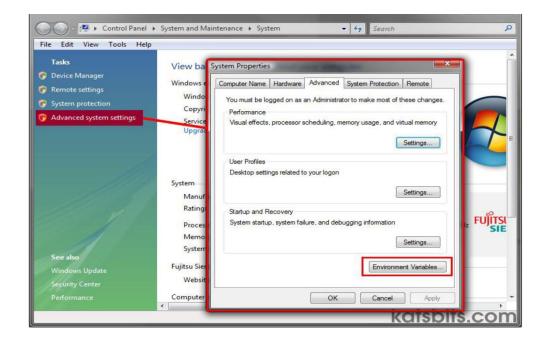


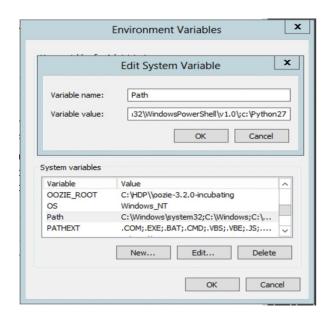
EP calculus and representation

- Take the same .PDB file used for MLP calculation
- PDB2PQR adds atomic charge to each atom
- APBS calculates the EP values and stores them in a .dx file
- Scivis uses the information about the mesh (previously calculated for MLP) and the .dx file to calculate the field lines
- Finally imported in Blender as curves along which travel particles, emitted from their positive end


EP calculus and representation

Packaging and Installation of 1.0V


- This new version is released as an add-on to the Blender
- BioBlender needs a few other software packages installed like
 - Blender 2.67 or newer
 - ProDy
 - PyMOL
 - Python 2.6 or 2.7
- Download BioBlender 1.0, zipped (do not extract)
- Open Blender and go to the User Preference panel select tab Addons, click Install from file.


Packaging and Installation of 1.0V

Packaging and Installation of 1.0V

• For MS Windows set the Python PATH in Environment Variables (e.g.; C:\Python26\)

General Workflow

- The BioBlender user interface is contained in the vertical Scene Property Panel.
- Import, export, view, and manipulate the molecular data.
- Each interface element (buttons, sliders, toggles) has help text associated with it (
- Errors and progresses are displayMouse-over)ed in the console window.
- Critical errors will appear in the main BioBlender Interface as a popup.

General Workflow

- 1. Select a PDB file and set the desired import options
- 2. PDB Import
 - Select file
 - Make preview
 - Import PDB
- 3. MLP Visualization
 - Show MLP on Surface calculates the lipophillicity of the molecule on the surface.
- 4. EP Visualization
 - Show EP
 - Options
 - Force Field

General Workflow

- The timeline at the bottom of the BioBlender shows the progress of the animation.
- Animation will start playing automatically once the import process is complete, but not in new version.
- length of animation = the number of conformations x the key-frame interval
- Running the EP visualization will also animate in the 3d viewport.(the particals)

<u>Demo</u>

Outlook

- Version 1.0 has some problems in two major features
 - It cannot import proteins of medium to large size
 - Cannot calculate MLP.
- For this reason this features have been withdrawn, while they look for solutions to the problems.
- Game Engine is not working properly in V1.0

References

- Andrei R.M. et al. <u>Intuitive representation of surface properties of biomolecules using BioBlender</u>. BMC Bioinformatics 2012, 13(Suppl 4):S16. Published: 28 March 2012
- Andrei RM, Pan CM, Zoppè M: BioBlender: <u>Blender for Biologists</u>. *BlenderArt Magazine* 2010, 31:27-32
- Callieri M. et al. <u>Visualization Methods for Molecular Studies on the Web</u>
 <u>Platform</u> (<u>The Web3D 2010 Conference</u> 15th International Conference on 3D Web Technology, 22 24 July 2010, Los Angeles, California)
- Zoppè M. et.al. <u>Blender for biology: The making of Protein Expressions Study N.2</u> (Proceedings of the Blender Conference 2009, 22 26 October 2009, Amsterdam, the Netherlands)
- BioBlender http://www.bioblender.eu
- Blender http://www.blender.org
- SciVis Unit http://www.scivis.it/videos/
- PDB http://www.pdb.org/pdb/home/home.do

Thank you